
International Journal of Theoretical Physics, Vol. 33, No. 1, 1994 

Advantages of Quantum Mechanics on Phase Space 
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Quantum mechanics formulated in terms of (wave) functions over phase space 
is shown to have numerous advantages over the standard approach. These 
advantages arise in the contexts of discussion of the theoretical framework and 
of descriptions of laboratory experiments. 

1. THE STRUCTURE OF THE THEORY OF QUANTUM 
MECHANICS ON PHASE SPACE 

Quantum mechanics on phase space arises in the following setting: Let 
and ~ be sets. Elements of ~ are termed "states" and elements of 9.I are 

termed "observables." G will denote a (Lie) group of automorphisms of 9.I. 
H will denote any closed subgroup of G for which the homeogeneous space 
G/H of G possesses a symplectic structure. ~ is a set of positive bilinear 
mappings: ~ x 9.I--, R; dements of ~ will be called (quantum) expectations. 
Then a (quantum mechanical) physical system is a quadruple {6, 9~, G, ~} 
satisfying the following: 

Axiom 1. Every state in ~ corresponds to a density operator p in 
L2(G/H) for some symplectic homogeneous space G/H of G, where/~ is the 
invariant measure arising from the symplectic two-form. Conversely, to 
each such density operator there corresponds a state. 

In particular, if ~, ~o ~L2(G/H), then ~ + fl~o ~L2(G/H) for any fl~C 
and some state corresponds to this mixture. In this way, the superposition 
principle holds. 

The modern approach to classical mechanics tells us that the property 
that G/H is a symplectic space is equivalent to G/H being identifiable as a 
classical phase space. 
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Axiom 2. The coordinate variables of the symplectic homogeneous 
space G/H have a prior interpretation as classical observables in classical 
phase space. 

From Axiom 2, given Borel set A of classical phase space G/H, one 
may define and interpret the phase space localization operator A(A) on 
L2(G/H) given by 

A(A)~F = XA~ 

for all ~PeL~(G/H), where Ha is the characteristic function for set A. 
We remark that the map A:Borel(G/H)oProjections on L2~(G/H), 
A: A ~ A(A), defines a projection valued measure (PVM). 

Axiom 3. Elements of 9.I are realized in the setting of LZ~(G/H) as 
self-adjoint (or perhaps only symmetric) operators on L~(G/H). The map 
A: Borel(G/H ) --,Projections on L~(G/H), A: A ~ A(A), is such that the 
set of observables in L~(G/H) contains the span of {A(A)lAeBorel(G/n)} 
as well as the closure of the span (in a suitable topology which I will not 
describe here). 

Since G/H is a homogeneous space of G, there is a natural action of 
G on this set of cosets of G. For xeG/H, and geG, this action will be 
denoted x ~ gx. Let ~ denote any character (C-valued representation) of 
H. 

Define a: G/H--. G to be a Borel section and ~z: G ~ G/H to be the 
canonical projection. Then for geG and xeG/H, h(g-l,x)=tr(x) -1o 
g o a(g-lx) is an element of H. It follows that V ~, defined on L2(G/H) by 

[V'(g)q?l(x) - a(h(g-', x))q?(g -ix) 

determines a unitary representation of G on LE(G/H). Furthermore, the 
PVM A is covariant under the action of V': 

V~(g)A(A) V'(g) - ~ = A(gA) 

[It follows that G acts as an automorphism of the closure of the span of the 
A(A).] 

Axiom 4 Every elementary physical system ("particle") is described 
by a G-irreducible subspace of L~(G/H) for some symplectic homogeneous 
space G/H of G. 

Let ~ denote a closed subspace of L2v(G/H) hosting an irreducible 
representation and let P: L2~(G/H)--*~g be the projection on ,,El. Then 

A ~-* A,(A) = PA(A)P 
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A~Borel(G/H), defines a covariant positive operator valued measure 
(POVM) on ~r also denoted "the phase space localization operator" 
(restricted to ,,~f). Because P does not commute with each A(A), one does 
not obtain in this manner a projection valued measure on ~ .  

Axiom 5. A measurement apparatus may isolate an elementary sys- 
tem. In this circumstance, one may associate a projection P with the 
measurement apparatus, with P given as above. Then, for any density 
operator p in L2(G/H), the probability that a measurement of state p using 
this apparatus will yield an outcome in AeBorel(G/H) is given by the 
expected values @(p, PA(A)P) = Tr(pPA(A)P) = Tr(pA, (A)). 

Suppose o~f is a Hilbert space that is not necessarily a closed subspace 
of L2(G/H) but ~ hosts a representation U of G. Let A ,  be a covariant 
POVM defined on the Borel sets of G/H that is absolutely continuous with 
respect to the invariant measure #; then a general result shows that A,  has 
an operator density T: x ~-~ T(x) that is measurable and 

A,(A) = .fA d (x) T(x) 

T(x) is a positive operator and T satisfies the covariance condition 

V(g)T(x)V(g) - '  = T(gx) 

If U is irreducible, T(x) is a one-dimensional projection (for each x ~ G/H). 
Set T(identity c lass)-  ]q)(r/I for some q e ~ .  Then we shall denote T 
by T,, A .  by Am, and ~ by 9r176 For I~(x, y ) -  (U(a(x))rl, U(a(y))tl), 
x ,y~G/H, it follows that K. defines a reproducing kernel in L2(G/H) 
whenever the representation U satisfies the technical condition of "square 
integrability over (G/H)." The K, plays an important role in a rigorous 
treatment of quantum field theory (Schroeck, 1988). The existence of 
representations square-integrable over G/H for a general group G is not yet 
completely understood mathematically. When this does hold, the map 

W,: a~ ~ L2.(G/H), [W, qd(x) = (U(.(x))q, t# ) g  

provides a canonical intertwining operator such that, for all g~G, 

W, U(g) = V~(g)W, 

whenever r/ satisfies U(h)r 1 = ot(h)rl, h ~ W. W~ is an isometry when r/ is 
suitably normalized. In this way. the representation space ~ may be 
identified with a subspace of L2u(G/H). and for P, : L~(G/H) -* W , ~ .  we 
have W,A,( A) W~ " ~ = P,A( A)P,. 

The mysterious "square-integrability over G/H" condition on q above 
is a condition of finite total (kinetic) energy in the cases G = Heisenberg. 
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Galilei, or Poincar6 group. For the Poincar6 case, especially for massless 
particles, the form of W, and the intertwining relation are, in fact, slightly 
more complicated than presented here, although they are close in form. All 
irreducible representations for these groups may be so entwined, that is, 
found as irreducible representations of L2(G/H) for some H (Brooke and 
Schroeck, 1993; Healy and Schroeck, 1993). Therefore, all of standard 
quantum theory may be found within this formalism. In the Poincar6 case, 
the subgroup H and G/H for the massive case differ from those for the 
massless case. 

From Am(A ) = J'A d~,(x) T,(x) it follows that A,(A) has purely discrete 
spectrum in [0, 1] for A compact (Schroeck, 1989). Then Tr(A,(A)) = #(A). 
To localize a particle with wave vector ~k 6 ~ in phase space volume A, one 
applies An(A); that is, ~, ~ A,(A)~k. If ~k is an eigenvector of An(A ) with 
eigenvalue 2, then IAn(A)~k(x)l 2 = 2=1 ,(x)12; so the process of localizing ~b in 
A reduces the probability of finding the particle in any region by the factor 
22. 22 is called an attenuation factor. One computes that if A is a rectangle 
of sides AP and AQ, then/z(A) = AP.  AQ �9 (27~h) - I. Thus if/z(A) < 1, that 
is, AP �9 AQ < 27~h, then no eigenvalue of An(A ) is near 1 and the process of 
localization in A causes severe attenuation. This is a form of the uncer- 
tainty principle. If/tA >> 1 and the boundary of A is smooth with normal to 
the boundary not twisting much, a result of Omn6s (1989) shows that most 
eigenvalues of An(A) are either near 1 or near 0. Thus the number of 
eigenvalues near 1 is approximately #(A); that is, the number of indepen- 
dent eigenvectors not attenuated by localization is approximately p(A). 
This is a statement of quantization of space. In signal processing the same 
Heisenberg group analysis applies, and this result is known as "the channel 
capacity theorem." 

2. ADVANTAGES OF THE FORMALISM 

The advantages of the formalism of quantum mechanics on phase 
space arise from the property of informational completeness of the phase 
space localization operators: 

Definition. A subset {A~ I~ el} of 9.1 is informationally complete iff for 
p, p ' e ~ ,  ~(p, A~) = ~(p', A~) u  implies p = p'. 

As an example, let E P, E Q be the spectral projections for momentum 
and position, respectively, in L2(R n) for ordinary spin-zero quantum the- 
ory. Then, 

IA E Borel( R } u la Sorel( R } 
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is not an informationally complete set. The electrical engineering equivalent 
of this for n = 1 is that time-series analysis of signals plus frequency 
spectrum analysis of the same signal is not informationally complete. 

Theorem (Healy and Schroeck, 1993). For G = affine, Heisenberg, or 
Galilei group, and r/ square-integrable over G/H with U(h)tl = ~(h)r/ for 
all hell, then for spin-zero representations, G/H~g~" and {A.(A)[ 
AeBorel(G/H)} is informationally complete in ~ ' .  [A similar result holds 
for spin-j representations, but one needs a family (2j + 1)-fold larger, in 
order to handle each spin component.] 

An immediate consequence of this theorem coupled with a theorem of 
Busch (1991) is that every bounded operator, hence every observable, is 
contained in the closure of the span of {A,(A)[AeBorel(G/H)}. Thus, 
beginning with G, H, and r/, we construct L~(G/H), the A~(A), and finally 
all bounded operators, all observables. In this way, the fact that G is a 
group of symmetries for 9.I is automatic (Schroeck, 1989). 

This example and theorem expose a crucial difference between joint 
phase space analysis of experiments and a common quantum analysis of  
experiments based on measurement of position alone, or position alone 
augmented by measurement of momentum alone. The latter types of 
experiment are incapable of being informationally complete. On the other 
hand, consider 

~(p, A.(A)) = Tr(pA.(A)) 

: r(,of 
fa dis(x) Tr(p T, (x)) 

fa dis(x) ( U(a(x))rl, p U(a(x))~l ) 

In the case that p is a vector state, p = [~,)(~b[, then 

Tr(p, A,(A)) = fa dis(x) [(u(a(x))q, 

By the theorem above, the set of these numbers for AeBorel(R") is 
informationally complete. From this and basic integration theory, it is 
equivalent to know the set of numbers {[(U(a(x))q, ~)t 5, x eG/H}. Formu- 
las showing how to reconstruct ~O up to a constant phase from the real 
numbers (transition probabilities)[(U(tr(x))q, ~)[2 are known; similarly, 
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formulas for reconstructing p from the set of numbers Tr(pT~(x)) are 
known (Healy and Schroeck, 1993). 

We next show that these numbers are experimentally accessible in a 
practical way. These phase-space-dependent transition probabilities are 
directly observable in experiments in which particles are captured on a 
momentum- or frequency-dependent screen, as in color photographs, holo- 
graphs, cloud chambers, etc. Alternatively, interferometry experiments may 
also yield the desired data; this is the content of the following theorem, 
which is a direct consequence of the superposition principle, i.e., of the 
existence of interference effects. 

Theorem. Let t/ be a fixed vector in L2(R) with narrow momentum 
spread and finite energy. Let ~ be any vector in L2(R). Suppose there is a 
process whereby ~k and U(g)th g eHeisenberg group, may be superimposed 
and the intensities 

i (g)  =__ I10 + V(g),7 [I 2 

measured. Then the visibility (contrast) of the resulting interference pattern 
determines I<U(g)t/, ~)l" The result generalizes to L2(Rn). 

Proof. Recall that for an interference pattern as in Fig. 1, the visibility 
V(go) is defined by V(go) = [/max - Imin]/[Imax + Imin], where Im,~ and I~ ,  
are measured near go. For geHeisenberg group, write g = (q, p), q standing 
for a translation by q of position and p standing for a translation by p of 
momentum. Let Po denote the mean momentum of t/. Then, 

< U(q, p)tl, ~ ) ~ exp{iq. (Po - P) + iO(q, p) } I( u(q, p),l, O )l 

where both O(q,p) and [(U(q,p)thO)[ are slowly varying functions of 
(q, p). Thus, 

I(q,p) = [[~ 112 + I1~ II ~ + 2 Re(U(q,p)ti, g/) 

= It~ I12 + I1~ II ~ + 2 cos{q �9 (Po --P) + O(q,p)} [(U(q,p)ff, ~b)t 

IlllaX 

Fig. 1 

! 
g 
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T h e r e f o r e ,  /max  - -  [min ~--- 41(U(q,P)rl, r and/max + I~,n -- 2( [1r II 2 + [I ~/I1: ); 
SO, 

c - '  = (ll 'll= + 112 )/2 

The normalization of the A,(A) will eliminate c; however, we note that if 
~b and ~/are normalized, then c = 1. [] 

A similar analysis holds if one can instead prepare a test particle of 
well-defined position. Note that delta functions are not required; realistic 
data analysis is possible. 

Thus, in any experimental situation in which a test particle (test signal) 
of well-defined momentum (frequency) or position may be used, superposi- 
tion allows the taking of informationally complete data. 

In contrast, one never measures the complex data (U(q, p)~, ~k) nor 
the complex signal "~k." One can only measure in such a way as to obtain 
real readouts or energy patterns. All measurements of complex signals in 
the end boil down to such measurements, and it is efficient to deal directly 
with these measurement outcomes rather than converting with effort back 
to a complex wave interpretation of the data. We add that the terms 
(U(g)rl, ~, > define the coherent state transform in general. Unfortunately, 
these terms are not easily experimentally accessible, in contrast to the terms 
I< U(g)rl, ~b >l" 

Consider the following: 

Advantage List 1. Measurement of the phase space location operators 
to obtain Tr(pT,(x)) yields informationally complete data. In particular, 
this yields: 

a. Efficient pattern recognition procedures. 
b. Unique characterization of fixed noise, as well as practical subtrac- 

tion of such noise from the desired signal. 
c. Adaptive experimental processing (by varying the choice of r/). 
d. Data compression techniques. 
e. Extension of the realm of applicability of quantum theory to 

general signal processing in both the electrical and biological 
realms. 

To understand that (a)-(e)  are advantages, consider that separate 
position (time) and momentum (frequency) analysis (Fourier analysis) 
possesses none of these properties! For example, the first line of the tune 
"Mary Had a Little Lamb" repeated periodically over and over with the 
same energy given to each note cannot be distinguished from a tune derived 
from it by permuting the words (notes) when using time-series and fre- 
quency-spectrum analysis. The time series and the frequency spectrum are 
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both invariant under permutations. In contrast, joint time-frequency anal- 
ysis will uniquely determine the tune. To illustrate this, I have had a video 
prepared, Fourier Transform: The Movie, which compares these two meth- 
ods of signal analysis (Ertem, 1992). The use of frequency spectra there 
shows the difficulty as well as the partial success of distinguishing very 
different sounds via Fourier analysis. On the other hand, a previously 
unrecognized characteristic of the voice of a famous Italian singer is 
revealed by joint time-frequency analysis. Snapshots of power spectra 
(energy versus frequency) from this video are presented in Fig, 2 for the 
purpose of distinguishing the sounds from pieces by Tchaikovsky, Bach, 
Haydn, Ketelby, Phil Collins, the rock group Pink Floyd, and Luciano 
Pavarotti. These spectra show the unsuitability of Fourier methods to 
distinguish these radically different sounds. There should be no surprise in 
this, since we are already familiar with the fact that marginal probability 
distributions do not determine a unique joint probability distribution. Here 
we are precisely dealing with joint quantum probabilities for nonindepen- 
dent observables, and the following fundamental question arises: why 
should we persist in describing Hilbert space quantum observables in terms 
of expected values of position or of momentum or of their spectral families 
when observations may be more naturally described in terms of informa- 
tionally complete POV measures on phase space? Moreover, why describe 
states in terms of complex-valued functions of position or of momentum 
rather than functions on phase space when the description of experiment is 
more suited to the latter? 

For claim (b), consider the familiar weather radar screen showing 
noise from nearby buildings appearing as a large signal near the center of 
the radar screen. For radar systems operating as time-series systems or 
through Fourier transform as frequency spectra, subtraction of the noise 
signal as a function of time (or frequency) from the corresponding total 
signal tends to degrade the signal so much, it is not done. Signal analysis 
based on energy versus time and frequency jointly, being informationally 
complete, does not suffer from this. This newer type of analysis was 
suggested for implementation in radar analysis several decades back (Stutt 
and Spafford, 1968; Delong and Hofstetter, 1967, 1969). 

For claim (c), one need only acknowledge the feasibility of using 
different states for test particles/test signals. Wave generators and 
particles in different environments or of different preparation may be used. 
Bats use this in echolocation in order to extract different characteristics of 
potential prey (Simmons et al., 1975; Suga, 1990: Schroeck, 1991). No such 
flexibility exists in Fourier transform theory since there is only one Fourier 
transform. 
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For claim (d), one first observes that the transformation on density 
operators p given by 

p ~ R,(x) = Tr(pT,(x)), x~G/H 

yields a positive measurable function on G/H with integral = 1. That is, the 
density for the phase space localization operator yields a bona fide classical 
distribution function on the classical phase space G/H. One may compute 
the classical entropy for R~(x). For a set of choices of q, choose the one 

1 yielding lowest uncertainty to obtain a data compression process. 
Even without the adaptive part of the procedure, simply using the 

general techniques for the Heisenberg group with (worst) test function 
r /=  Gaussian yields an enormous data compression in photo analysis 
(Daugman, 1988). 

Claim (e) has already been justified in the discussion above. We do not 
wish to leave the impression that experiments more typical of physics lie 
outside the realm of application here. In fact, the results of Foulis and 
Schroeck (1990) show that the present formalism is a natural consequence 
of axiomatizing a Hilbert space description of physics from the operational 
manual point of view. Then the process of calibration of the instrument 
leads, by use of the Sakai operator in C*-algebra theory, directly to the 
covariant POVM defined over a classical phase space. In a more applied 
paper (Busch and Schroeck, 1989), the POVM analysis of several basic 
experiments of physics is carried out. 

Having introduced the dequantization map p ~-~ R, from quantum 
density operators to classical probability densities, we search for a corre- 
sponding quantization procedure from classical observables to quantum 
observables. In view of the informational completeness property for the 
phase space localization operators in the spin-zero case, one knows from 
the theorem of Busch (1991) that almost any observable B may be written 
in the form 

B = [ f(x) T, (x) dlt(x) 
Jo ~to 

for some measurable function f Theorems of Healy and Schroeck (1993) 
allow one to determine f from B. In the other direction, any real-valued 
measurable function in LP(G/H) for any 1 < p  < oo yields a bounded 
operator which is even a compact operator ifp < oo (Schroeck, 1989). Then 

Tr(pB) = f f(x) Tr(pT~(x)) d#(x) 
Jo ~to 

= [ f(x)Rn(x) d#(x) 
do /H 
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that is, classical and quantum expectations agree. It is emphasized that no 
limit as h ~ 0 is taken. The quantum-to-classical correspondence is a direct 
consequence of the two properties (a) G/H is a symplectic space interpreted 
as a classical phase space, (b) the set of localization operators 
{A,(A)JA~Borel(G/H)} is informationally complete. One may further 
check that the correspondence between commutator brackets for the quan- 
tum operators and Poisson brackets for the corresponding classical observ- 
ables holds whenever one of the observables is in the Lie algebra for G 
(Schroeck, 1985). General commutations do not coincide because of the 
fact that the A(A) form only a POVM rather than a PVM. Since this is a 
direct consequence of the choice of instrument (and hence, of r/) used to 
isolate the elementary physical system, this seems to be an essential 
ingredient rather than a drawback. 

Advantage List 2: 
f. A classical-quantum correspondence is present without introducing 

approximations or unphysical limits. 
g. There is no need to use a classical description for the measurement 

process and a quantum description for the object to be measured. 
The two systems may be treated on an equal footing. 

As a direct consequence of advantage (g), the question of objectifica- 
tion in classical measurement would seem to be equivalent to objectification 
in quantum measurement. 

There is no particular reason to isolate elementary .systems in all 
physical situations. In particular, one could choose to remain in the context 
of the reducible space L~(G/H). In this setting, quantum statistical me- 
chanics and classical statistical mechanics may be given a unified treatment 
(Ali and Prugove~ki, 1977). 

Furthermore, the group G may be taken to be the Poincar6 group or 
even more general relativistic groups such as the de Sitter group. In this 
fashion, once one obtains the reproducing kernel K,, quantum fields may 
be rigorously defined to obtain quantum fields on curved space without 
singular behavior of the fields (Schroeck, 1988). Also, without introduction 
of quantum fields, one may obtain the phase space localization operators 
for Poincar6 relativistic particles, including those of zero mass (Brooke and 
Schroeck, 1993). By comparison, localization of the photon in the formal- 
ism of standard quantum theory is well known to be impossible (Newton 
and Wigner, 1949; Wightman, 1962). 

Finally, since every irreducible representation of the Heisenberg, 
Galilei, and Poincar~ groups is contained in L~(G/H) for some H, every 
result of ordinary quantum theory is contained in quantum theory on 
phase space. Sometimes it is even easier to express the physics in this phase 
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space context,  as happens  with the description o f  signals as energy as a 
funct ion o f  phase space rather  than as a complex wave over configurat ion 
space or  as a complex wave on m o m e n t u m  space. 

Advantage Lis t  3: 
h. Classical and q u a n t u m  statistical mechanics may  be treated with a 

c o m m o n  formalism. 
i. Phase space localization o f  relativistic particles including those o f  

zero mass (e.g., photon)  is carried out. 
j. Q u a n t u m  field theory o f  free particles may  be developed even in the 

setting o f  curved space. 
k. All results o f  ord inary  qua n t um  theory are contained in the theory 

o f  q u a n t u m  mechanics on phase space. The phase space description 
m a y  even simplify the physical description. 
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